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We study the effect of third-order dispersion on the interaction between two solitons from different frequency
channels in an optical fiber. The interaction may be viewed as an inelastic collision in which energy is lost to
continuous radiation owing to nonzero third-order dispersion. We develop a perturbation theory with two
small parameters: the third-order dispersion coefficient d3 and the reciprocal of the interchannel frequency
difference 1/V. In the leading order the amplitude of the emitted radiation is proportional to d3 /V2, and the
source term for this radiation is identical to the one produced by perturbation of the second-order dispersion
coefficient. The only other effects up to the third order are shifts in the soliton’s phase and position. Our
results show that the statistical description of soliton propagation in a given channel influenced by interaction
with a quasi-random sequence of solitons from other channels is similar to the description of soliton propaga-
tion in fibers with weak disorder in the second-order dispersion coefficient. © 2004 Optical Society of America
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The electrodynamics of ultrashort optical pulses in optical
fibers is a rich and important field of modern nonlinear
optics.1,2 It also has a broad variety of potential indus-
trial applications in next-generation high-speed optical fi-
ber communications and photonic optical interconnect
technologies (see, e.g., Ref. 3). Modern high-speed opti-
cal fiber communication systems make extensive use of
multifrequency channel technology [wavelength division
multiplexing, see, e.g., Ref. 3] for transmission of informa-
tion. One of the major limitations on the performance of
such systems is caused by the nonlinear interchannel in-
teraction of optical pulses from different channels (inter-
channel collisions). With the increasing demand for
faster transmission of information, one can expect a cor-
responding increase in the number of channels used and a
decrease in the width of the pulses launched. As a re-
sult, the importance of interchannel collisions between
optical pulses is expected to increase, and an accurate de-
scription of the effects of these collisions is needed. In
this paper we study this phenomenon by using the con-
ventional optical soliton as an example. We focus our at-
tention on the effect of third-order dispersion on the in-
terchannel collisions between solitons, which is expected
to be dominant (in comparison with other inelastic ef-
fects) near the zero-dispersion wavelength.

In an ideal fiber, interchannel collisions between soli-
tons can be modeled by use of the nonlinear Schrödinger
equation (NLSE). In that case no radiation is emitted
owing to the collisions; i.e., the collisions are elastic. The
amplitude, frequency, and shape of the solitons are not
changed by the collisions either. The only effects of an
ideal collision are a phase shift proportional to 1/uVu and a
position shift proportional to 1/(uVuV), where V is the fre-
quency difference between the solitons. In real optical fi-
bers, however, this ideal elastic nature of soliton collisions
0740-3224/2004/010018-06$15.00 ©
breaks down owing to the presence of high-order correc-
tions (perturbations), such as third-order dispersion, Ra-
man scattering, and self-steepening, to the ideal NLSE.
In this case, collisions between solitons from different fre-
quency channels might lead to emission of radiation,
change in the soliton amplitude and frequency, corruption
of the soliton shape, stronger shift in the soliton position,
and other undesirable effects. (See Fig. 1 for a schematic
of the collision process.) In addition, the radiation emit-
ted owing to interchannel collisions might lead to interac-
tion between solitons from the same frequency channel
(intrachannel interaction). Therefore it is important to
have a realistic estimation for the intensity of the radia-
tion emitted, as well as for the change in the soliton pa-
rameters due to interchannel collisions.

Intrachannel interaction4–6 and interchannel colli-
sions7,8 between solitons of the ideal NLSE have been
studied in detail and are by now well understood. Sub-
stantial progress has also been made in understanding
the effects of perturbations (breaking the ideal, integrable
nature of the NLSE) on intrachannel interaction.4,9–13

In particular, several authors9,10,14 considered the prob-
lem of soliton fission, which is the splitting of a bound
two-soliton state into two separate solitons due to the
presence of perturbations. In contrast, accurate analysis
of the effects of perturbations on interchannel collisions is
a very complicated and long-standing problem, which, to
the best of our knowledge, was never fully addressed in
the past. The main technical problem in this case is how
to develop a perturbation theory around the multisoliton
solutions of the ideal NLSE. In spite of the existence of
exact expressions for the multisoliton solutions of the
ideal NLSE, direct perturbative analysis around the com-
plex multisoliton solutions has not yet been successful.
It should also be mentioned that direct numerical simula-
2004 Optical Society of America
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tion of the problem is very difficult, since an accurate
measurement of the collision-induced radiation requires
exact elimination (from the simulations results) of the ra-
diation emitted owing to single-pulse propagation.

In this paper we describe in a concise but self-
containing manner the solution of this long-standing
problem for the case in which the perturbation is due to
third-order dispersion. The effect of third-order disper-
sion on the interchannel collisions is expected to be domi-
nant compared with other high-order effects near the
zero-dispersion wavelength. We calculate the dynamics
and the total intensity of the continuous radiation emit-
ted as a result of the collision. We also calculate the
change, induced by the collision, in the soliton param-
eters. To achieve these goals, we first find a single-
soliton stationary (i.e., independent of the position along
the fiber) solution, taking into account third-order disper-
sion. This stationary solution is similar to the one ob-
tained by Kodama and Mikhailov by means of the normal
form theory.14,15 It should also be mentioned that the
propagation of a single pulse in the presence of third-
order dispersion was studied in detail by several
authors.15–18 It was found that even if the pulse
launched into the fiber is not exactly of the stationary
form it evolves into the stationary form after a
transient.17 We then use two such stationary solutions
as the initial condition for the collision problem. To find
the effects of the collision, we develop a perturbation
theory with respect to two small parameters: the dimen-
sionless third-order dispersion coefficient d3 and the re-
ciprocal of the dimensionless interchannel frequency dif-
ference 1/V. The amplitude of the emitted radiation is
found to be proportional to d3 /V2, and the source term
for this radiation has the same form as the source term
for the radiation that is emitted when a single soliton
propagates under a fast change in the second-order dis-
persion coefficient. The amplitude and the phase veloc-
ity of the solitons do not acquire any change up to the
third order of the perturbation theory. It is also found
that soliton propagation in a given channel under many
collisions with solitons from other channels is identical to
propagation of solitons in a fiber with weak disorder in

Fig. 1. Schematic description of the collision between two soli-
tons from different frequency channels.
the second-order dispersion coefficient. (The latter prob-
lem was addressed in Ref. 13.) Notice that the major
technical tool used in the analytical calculations is singu-
lar perturbation theory that is an appropriate extension
of the technique developed by Kaup.19

These results along with the general scheme of their
derivation are explained here in a brief but self-
containing form. We also present here a detailed discus-
sion of the implications of these results for some current
and future (ultrafast) fiber-optics communication sys-
tems. Discussion of many technical (mathematical) de-
tails will be presented elsewhere.20

Propagation of short-wave packets through an optical
fiber is described by the following modification of the
NLSE (see Ref. 1, p. 44):

i]zC 1 ] t
2C 1 2uCu2C 5 id3] t

3C, (1)

where z is the position along the fiber and t is the re-
tarded time associated with the reference channel. Coef-
ficients in front of the second-order dispersion term and
the nonlinear Kerr term are rescaled to unity and to the
factor of 2 in Eq. (1) by a proper choice of time units and C
units, respectively.21 The term that appears on the right-
hand side of Eq. (1) accounts for the effect of third-order
dispersion (linear dependence of fiber chromatic disper-
sion on the wavelength of the carrier frequency), with d3
as a constant. Higher-order terms (with higher-order
temporal derivatives and other than those given by the
Kerr-term types of nonlinearity) can be neglected in the
majority of practical cases. Notice also that fiber losses
in Eq. (1) are omitted. Equation (1) applies to the de-
scription of the interchannel interaction of optical pulses
in three cases: (i) the dispersion length, length of nonlin-
earity, and characteristic distance of soliton interaction
are much smaller than the characteristic length of fiber
losses22; (ii) fiber losses are compensated by in-line dis-
tributed optical amplifiers; and (iii) these losses are com-
pensated by lumped amplification achieved by insertion of
fiber spans with exponentially decreasing spatial disper-
sion profiles24 (dispersion-tapered fibers).

It is important to mention that Eq. (1) is generic, as it
explains simultaneous propagation through many fre-
quency channels. Unlike in the degenerate case of d3
5 0, Eq. (1) is not integrable. However, for many prac-
tical examples d3 ! 1; thus a perturbative calculation
about the integrable d3 5 0 limit is justified.

A single-soliton solution of Eq. (1) with d3 5 0 in a
given frequency channel, characterized by a frequency
shift V relative to a reference channel, is given by

h
exp@ia 1 iV~t 2 y ! 1 i~h2 2 V2!z#

cosh@h~t 2 y 2 2Vz !#
, (2)

where a, h, and y stand for the soliton phase, amplitude,
and position, respectively. Assuming that d3 ! 1, we
will be looking for a stationary perturbative single-soliton
solution of Eq. (1) in the form
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CV~t, z ! 5 @C̃V0~hV! 1 C̃V1~hV! 1 ...#exp~ixV!, (3)

where C̃V0 5 hV cosh21(hV), hV 5 h̃VtV , tV 5 t 2 yV

2 2V(1 1 3d3V/2)z, h̃V 5 (1 1 3d3V)21/2hV , and xV

5 aV 1 V(t 2 yV) 1 @hV
2 2 V2(1 1 d3V)#z. The first

term on the right-hand side of Eq. (3) is the ideal single-
soliton solution, which accounts for the shift in the
second-order dispersion coefficient ;d3V. One can see
that this shift changes the group velocity by 3d3V/2 and
the pulse width by the factor of (1 1 3d3V)1/2. (The
shift is not necessarily small. The only limitation on d3V
is 1 1 d3V @ d3 , which is the condition that the second-
order dispersion coefficient in the channel V is to be much
larger than the third-order dispersion coefficient. A simi-
lar form for C̃V0 was actually suggested in Ref. 25.) The
second term in Eq. (3) is perturbative, O(d3). To calcu-
late this term, we adopt the perturbation method intro-
duced by Kaup in Ref. 19. In Kaup’s theory, the differen-
tial operator L̂h is used to describe a linear perturbation
around the ideal soliton solution. The complete system
of eigenfunctions of L̂h includes a continuous spectrum of
delocalized modes, as well as four discrete localized
modes, related to small changes in the four parameters of
the soliton: V, a, h, and y. We expand C̃V1 in terms of
the eigenfunctions of L̂h and calculate the coefficients of
this expansion. It is shown in Ref. 20 that C̃V1 is stable
and localized. A similar analysis was carried out by
means of the normal form theory in Refs. 14 and 15. Sta-
tionarity of the solution [Eq. (3)] means that each of the
solitons propagates without any change in their param-
eters and without shedding any radiation; thus effects of
radiation emission and parameter change are due only to
soliton collisions.26

Let us now describe collision between two solitons from
different channels. For simplicity, and without any loss
of generality, we choose one of the channels to be the ref-
erence one with V 5 0. We also assume that for the sec-
ond channel V is much larger than the inverse width of
the pulse, i.e., uVu @ 1. We are looking for a two-soliton
solution of Eq. (1) in the form Ctwo 5 C0 1 CV 1 F,
where C0 and CV are described by Eq. (3) with V 5 0
and V, respectively, and F is a small correction due to col-
lision. It is straightforward to check that the exact two-
soliton solution of Eq. (1) at d3 5 0 acquires the form

Ctwo 5 C0 1 CV 1 F0 1 FV 1 F2V 1 F2V 1 O~1/V3!,

(4)

where F0 and FV are corrections of the leading order 1/V
in the channels 0 and V, respectively. The terms F2V

and F2V correspond to O(1/V2) corrections in channels
2V and 2V, respectively; the two latter corrections are
exponentially small outside the collision region. By anal-
ogy with the ideal d3 5 0 case, one substitutes a solution
of the form [Eq. (4)] into Eq. (1) and calculates F0 . Since
F0 oscillates together with C0 and uVu @ 1, one neglects
the exponentially small contributions from the terms rap-
idly oscillating with t and z. Then the equation describ-
ing F0 is
]zF̃0 2 i@~] t
2 2 h0

2!F̃0 1 4uC0u2F̃0 1 2C̃0
2F̃0* #

5 4i@ uCVu2C̃0 1 uCVu2F̃0 1 C̃0~CVFV* 1 CV* FV!

1 C̃0* CVF2V 1
1
2 CV

2 F2V* 1 C̃0uF0u2 1
1
2 C̃0* F̃0

2

1 C̃0uFVu2 1 F̃0~CVFV* 1 CV* FV!# 1 d3] t
3F̃0 ,

(5)

where F̃0 [ F0 exp(2ix0) and C̃0 [ C0 exp(2ix0). Vicin-
ity (in z) of the collision event is given by @z0 2 z̃/uVu, z0
1 z̃/uVu#, where uVu @ z̃@1, and is naturally separated
from the regions before and after the collision. In the col-
lision region, F̃0 acquires a fast (with respect to z) change.
Since for this region Dz ; 1/V, the ]zF0 and uCVu2C̃0
terms give leading contributions to Eq. (5), whereas the
] t

2F̃0 term can be neglected together with all the other
terms. In the successive orders of the perturbation
theory, one should carefully consider contributions com-
ing from terms such as ] t

2F̃0 and d3] t
3F̃0 . In the two

other regions, z , z0 2 z̃/uVu and z . z0 1 z̃/uVu, the in-
teraction between the solitons is exponentially small, so
that all the interaction terms there can be neglected.
Formally, separation into three well-defined regions
means that one can replace all the terms in Eq. (5), except
for ]zF̃0 , with Cd@V(z 2 z0)#, where d (z) is the Dirac
delta function and the constant C is simply the integral of
all these terms over z. This separation results in the
three well-formulated Cauchy problems for F̃0 in the
three regions.

Calculating F̃0 , one distinguishes between two types of
collision-induced corrections to the stationary solutions
[Eq. (3)]. The first one corresponds to changes in the
pulse parameters on top of the stationary solution, and
the second one corresponds to deformations of the form of
Eq. (3), which cannot be reduced to changes in the pulse
parameters, and thus leads to emission of radiation.
Even though the rigorous calculation of the effects of the
collision in successive orders of the perturbation theory is
quite complicated,20 the main result can be derived in a
straightforward manner by use of just a few equations.
We start by noticing that the equation for the O(1/V)
collision-induced correction F̃01

(0) is

]zF̃01
~0 ! 5 4iuCV0u2C̃00 5

4ih0hV
2

cosh~h0!cosh2~hV!
. (6)

In Eq. (6) the first subscript in F̃01
(0) stands for the 0 chan-

nel, the second subscript stands for the total combined or-
der in both d3 and 1/V, and the superscript stands for the
corresponding order in d3 . Integrating Eq. (6) from 2`
to some general z, one obtains

F̃01
~0 !~t, z ! 5 2

2ih0hV~1 1 3d3V!1/2

~1 1 3d3V/2!V

tanh~hV!

cosh~h0!
. (7)
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The source term for the emitted radiation F̃03
(1)R is of order

d3 /V2. The equation for this source term is

]zF̃03
~1 !R 5 d3] t

3F̃01
~0 ! . (8)

Substituting Eq. (7) into Eq. (8) and integrating over the
collision region, one obtains

F̃03
~1 !R~t, z0 1 z̃/ubu! 5 2iB]h0

2 C̃00~h0!, (9)

where the coefficient B is defined by

B 5
6h0

3hV~1 1 3d3V!1/2d3

~1 1 3d3V/2!2VuVu
. (10)

From Eq. (9) it follows that the source term for the emit-
ted radiation has the same form as the source term for the
radiation that is emitted when a single soliton propagates
under a fast change (with respect to z) in the second-order
dispersion coefficient. Once the source term F̃03

(1)R is cal-
culated, one can also calculate the total radiation energy
E0 emitted by the reference channel soliton:

E0 .
192h0

5hV
2 ~1 1 3d3V!d3

2

5~1 1 3d3V/2!4V4 . (11)

One also finds that the only changes in the pulse param-
eters up to the third order of the theory are the
O(1/V) phase shift, Da0 . 4hV(1 1 3d3V)1/2@(1
1 3d3V/2)uVu#21, and the O(1/V2) position shift, Dy0
. 24hV(1 1 3d3V)1/2@(1 1 3d3V/2)2VuVu#21, which
are already present in the ideal (d3 5 0) collision case.
It should be mentioned that a similar expression for Dy0
(with d3 5 0) was obtained by Mollenauer et al.7,24 for
the ideal collision case. It is also interesting to note that
the O(d3) stationary solution C̃V1 behaves like an ideal
soliton in the collision: It acquires the Da0 phase shift
and the h0Dy0 position shift and contributes to radiation
only in the order d3

2/V2 of the theory. The soliton ampli-
tude and phase velocity do not acquire any change up to
third order of the theory. The result for the soliton am-
plitude is consistent with the conservation law for the to-
tal energy, which requires h 5 1 1 O(d3

2/V4) for both
solitons. (See also Ref. 13 for a discussion of a similar
situation induced by the fluctuation of the second-order
dispersion coefficient.)

Let us use our results to make specific predictions for
an optical fiber setup with distributed amplification com-
pensating losses or with lumped amplification and
dispersion-tapered fibers. Taking h0 5 1 and requiring
that the widths of the two solitons be equal (bit rates
should be the same in all channels), one obtains hV

5 (1 1 3d3V)1/2. We take the channel spacing V as V
5 Dn/n0 5 5, which is the typical value used in current
wavelength-division-multiplexing systems, operating at a
bit rate of 10 Gbit/s.24,27,28 Indeed, in these systems the
typical pulse width is t0 5 20 ps, corresponding to n0
5 15 GHz, and the channel spacing is 0.6 nm, corre-
sponding to Dn 5 75 GHz. The error in the calculation
of the energy loss due to collision-induced emission of ra-
diation can be estimated as ;1/V, which for V 5 5 is ap-
proximately 20%. We consider multichannel transmis-
sion near the zero-dispersion wavelength, where the
effect of third-order dispersion on soliton collisions is ex-
pected to be the most significant. We point out that the
single-channel soliton transmission at the zero-dispersion
wavelength was considered by many authors29–31 because
of its potential advantages, e.g., the low power required
for the transmission. By use of the definitions of d and
d3 in Ref. 21, it is easy to see that for V 5 5 our pertur-
bation theory is applicable already to the channel next to
the zero-dispersion channel. Indeed, in this case ub2u
5 (10b3)/(pt0), and therefore d3 5 b3 /(3ub2ut0) ; 0.1
for this channel. Let us choose this (closest to the zero-
dispersion point) channel to be the reference channel.
We then find that the fraction of energy emitted in the
form of radiation by a soliton from the reference channel,
as a result of a collision with a soliton from the next chan-
nel (the channel separated from the zero-dispersion chan-
nel by 2V 5 10) is 2 3 1024. The collision also leads to
a corresponding decrease in the amplitude and increase
in the width of the soliton by a factor of 2 3 1024. Even
though this is a relatively small effect, the accumulative
effect of many collisions taking place while the soliton
passes a large distance along the fiber might be very de-
structive. To estimate this effect, we first calculate the
average distance Dxic passed by the soliton in the refer-
ence channel between two successive collisions. Using
the relations in Ref. 21, one obtains

Dxic 5
pTt0

3

2~1 1 3d3V/2!b3uVu2s
, (12)

where T is the time-slot width and s is the fraction of oc-
cupied time slots. Typical values are T 5 5, s 5 0.5, and
b3 5 0.1 ps3/km. Consider, for example, a system oper-
ating at a bit rate of 160 Gbit/s and with pulse widths of 1
ps. Long-distance single-channel transmission experi-
ments at 80 Gbit/s32 and at 160 Gbit/s33 have shown that
soliton transmission at such high bit rates are possible.
Additional experiments34 have shown that transoceanic
multichannel transmission at 80 Gbit/s per channel is
also possible. Therefore one can consider the possibility
of implementing multichannel transmission with bit rates
as high as 160 Gbit/s. For the system considered in our
example the average distance passed by the soliton until
it experiences 1000 collisions and loses approximately
20% of its energy is 4500 km. If we take into account col-
lisions with solitons in the zero-dispersion channel (esti-
mating their contribution to be similar) and an extreme
case, in which s ; 1, this distance decreases to approxi-
mately 1000 km. (The energy loss due to single-pulse
propagation, which is proportional to d3

2, is only 1% in
this case.) For systems operating at lower bit rates (and
higher pulse widths), the average distance between colli-
sions increases like t0

3 does, and the accumulative effect of
the collisions decreases correspondingly.

Another accumulative effect, which can be even more
severe, is the interaction between solitons propagating in
the same frequency channel induced by multiple colli-
sions with solitons from all other channels. To study this
effect, one should consider the solitons in all other chan-
nels as a pseudorandom sequence of pulses. Then propa-
gation of solitons in a given channel is described by a per-
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turbed NLSE, in which the perturbative term has the
form of the radiation source term F̃03

(1)R [given by Eq. (9)],
multiplied by a function j(z), corresponding to the ran-
dom short-correlated nature of the multiple interchannel
interactions. It is very important to notice that this per-
turbative term has the same form as the perturbative
term appearing in the equation that describes the propa-
gation of solitons in fibers with weak noise in the disper-
sion coefficient. This observation means that the results
obtained in Ref. 13 for weakly disordered optical fibers
can be directly applied to describe soliton propagation un-
der multiple interactions with solitons from other chan-
nels. Thus one should expect the emergence of long-
range radiation-mediated intrachannel interaction in
multichannel systems as well.

We conclude by pointing out that this study suggests a
general recipe for investigating a variety of interchannel
interaction phenomena. For this purpose, one should
first obtain a stationary single-soliton solution of the per-
turbed nonlinear Schrödinger equation. This solution
then serves as the initial condition in the collision prob-
lem. Using the double-perturbation theory presented
here, one can describe all effects caused by the collision.
An interesting example is provided by fast soliton colli-
sions in the presence of Raman scattering, the phenom-
enon that should be dominant for very short pulses.
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